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ABSTRACT

In this report a mathematical model is presented which
describes the dynamics of the  Pointing Control System (PCS) for
the Apollo Telescope Mount (ATM). The vehicle is modeled as two
rigid bodies--a carrier and an experiment package--connected by
a rigid, massless, two-degree-of-freedom set of gimbals. Attitude
control of the carrier 1s provided by three two-degree-of-freedom
Control Moment Gyroscopes (CMGs), and the experiment package is
controlled by means of torquers located on the gimbal axes.
Expressions are presented for three types of vehicle force and
torque disturbances, namely, gravitational, aerodynamic, and
crew motion.

In addition to the equations themselves, a digital
computer program is presented which performs the operations
necessary to obtain solutions to specific problems. This
document is intended to present the mathematical model and
the computer program in a form sufficiently general that they
may be applied to either the ATM or to advanced or alternative
vehicles employing similar attitude control systems. Both
the model and the program have been used for the analysis of
the ATM PCS and related attitude control systems for advanced
stellar astronomy missions; the results of these investigations
will be presented separately.
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A MATHEMATICAL MODEL FOR SIMULATION OF THE
APOLLO TELESCOPE MOUNT POINTING CONTROL SYSTEM

1.0 INTRODUCTION

1.1 Background

Orbiting astronomical telescopes, being essentially
above the earth's atmosphere, have distinct advantages over
their ground-based counterparts [1].* However, they also
present a unique set of problems, one of these being the reauire-
ment to keep the telescope pointing precisely in the direction
of interest. This pointing accuracy** requirement has been
one of the major considerations in the design of the Pointing
Control System (PCS) for the Apollo Telescope Mount (ATM).¥¥#¥

It was concluded early in the ATM program that if the
experiment package were rigidly attached to the manned portion
of an orbiting facility, the pointing accuracy required by the
experiments could be maintained only if crew motion were severely
restricted [2]. It is therefore desirable to have some means of
isolating the effects of crew motion from the attitude dynamics
of the experiments themselves. Several schemes have been
suggested for doing this: allowing the experiment package to
orbit independently but in close proximity to the manned
craft [3], tether arrangements [47], optical transfer lens
techniques [5], magnetic suspension systems [6], and gimbal
mounting of the experiment package at its mass center. This
report 1is concerned with the latter scheme.

#¥ Numbers in brackets designate references at the end of
the report.

¥* The term "pointing accuracy" in this report refers to
the accuracy of maintaining a specific telescope attitude once
this attitude has been acquired, in contrast to the accuracy
of acquisition itself.

¥¥¥The ATM, which includes several solar astronomy experi-
ments, is scheduled to be launched among the first Apollo

i 14 D + 4 1 £
Applications Program (AAP) paylcads. Othcr optical teclescop

for both solar and stellar astronomy, are being considered for
future AAP missions.

5
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1.2 Purpose

The ATM carrier and experiment package,which together
comprise the spacecraft, are connected by means of a two-degree-
of-freedom system of gimbals whose axes are nominally normal to
the experiment optical axis. An Experiment Pointing Control
(EPC) system drives torquers on the gimbals so as to keep the
experiment optical axis aligned with the sun line. Three two-
degree-of-freedom Control Moment Gyroscopes (CMGs) are employed
to maintain the sun-pointing attitude of the carrier.¥

In the design of interacting control systems such as
the ones described above, it 1s often necessary to determine
the behavior of a given design or to assess the influence of
certaln design parameters. For example, PCS behavior may be
compared for several schemes of computing the CMG gimbal rate
commands, or it may be desired to know how effectively the
experiment gimbal mounting isolates the optics from crew motion
disturbances. The influence of several design parameters on
system behavior is also of importance; such parameters are,
for example, CMG feedback gains and the experiment package
mass center location. It is the purpose of this report to
present a set of differential equations which describe the
PCS and the vehicle attitude dynamics; design analyses may
then be performed either by numerical integration of the full
set of equations on a digital computer or by making simplifi-
cations in the equations appropriate to the problem at hand
and obtaining the analytical expressions of interest.

In regard to future AAP astronomy experiments,
additional questions may be answered by use of the mathemati-
cal model, the basic question being that of the pointing
accuracy attainable with a system of the PCS type. In order
to study the pointing accuracy limitations of the PCS for
future AAP missions it will be necessary to include some
details not presently incorporated in the mathematical model,
such as the effects of noise and other nonlinear effects in
the sensors, compliance in the structure, etc. In anticipa-
tion of future studies, the equations have been written and
programmed as much as possible in modular form so as to
render updating a relatively simple task.

1.3 OQutline of the Analysis

A broad outline of the sequel 1s presented here so
that the reader will have a clear 1dea of the objective and a

better understanding of how all of the detalls fit together.

¥More detailed information on the ATM and the associated
attitude control systems may be obtained from Reference 7.
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The purpose of this report is to develop a set of differential
equations representing the dynamics of the vehicle and the PCS;
the equations are presentéd with a view toward numerical solu-
tion on a digital computer, and a computer program for this
purpose is included.

An analytical description of the vehicle to be
investigated 1s given in Section 2. Here the five general-
ized coordinates that specify the vehicle attitude are
introduced. The object of Section 3 is to obtain first
order differential equations of motion, five of these, the
dynamical equations, being obtained by use of a method due
to Kane and Wang.* Quantities such as velocities, acceler-
ations, and inertia forces used in the generation of the
equations of motion, are obtained in the first part of
Section 3. Expressions for the active forces and torques,
which also enter into the equations of motion, are developed
in Sections 4, 5, and 6. The CMGs are described in Section
4.1, and a formula is obtained for the CMG control torque in
terms of the gimbal angle rates. There are a variety of
schemes for determining gimbal angle rates in terms of the
state variables, and these so-called control laws are dis-
cussed in 4.2. Torques acting between the telescope and the
carrier are investigated in Section 5, whereas Section 6 is
devoted to gravitational, aerodynamic, and crew motion
effects. Section 7 describes a computer program which inte-
grates the equations of motion, derived in Section 3, under the
influence of the active forces treated in Sections 4, 5, and 6;
the principal computer programs are listed in the appendices.

2.0 COORDINATES AND THE DYNAMICAL MODEL

2.1 Axes and Coordinates

Suppose a satellite comprising a carrier and an
experiment package to be in a cilrcular orbit about the
earth, and cons'ger three sets of right-handed mutually
orthogonal axes, XYZ, XY g% g» and X5¥5%55 the first set

being fixed in an inertial reference frame such that, at some
time t =0, X is directed toward the satellite's zenith and Y in the
direction of the orbital motion; X,¥,%, are fixed in the

experiment package, and Xq¥32q are fixed in an inertial refer-

ence frame such that X5Y 5% and X3¥4q2%q 3F€ aligned when the

®*This method [11, 12], although relatively unknown, offers
certain advantages for dynamical systems such as the one con-
sidered here.
¥¥Note that these axes do not comprise a cartesian coordinate
system, for the axes need not intersect at a common point (origin),
and an axis may be translated without affecting its definition.
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satellite is in the desired orientation.¥ The orientation of
X4Y 324 relative to XYZ 1is specified by three angles ¢d’ed and

bgo generated as follows: 1nitially align X4V 424 with XYZ;

rotate X3 324 about 23 by an amount wd; follow with a rotation
about Vg of amount 045 then perform a rotation ¢d about Xqo
bringing X4¥ 324 into its final position. The foregoing proce-

dure is sometimes known as a 3,2,1 Euler angle sequence involv-
ing the angles wd’ed’¢d’ respectively. The orientation of

X5¥5%5 relative to X4V 4q%q 18 likewise specified in terms of a

3,2,1 Euler angle sequence employing v,6, and ¢, respectively.
Note that under these definitions ¢,6, and ¢ measure the
telescope attitude relative to the desired telescope attitude.

2.2 Description of the Dynamical Model

The carrier, called Bl’ and the experiment package,

B2, ¥¥are assumed to be connected by massless gimbals whose two

axes of rotation are mutually orthogonal and intersect at O,
as shown in Figure 2.1.

Figure 2.1

¥Tn the case of the ATM, the desired orientation is one in
which the experiment axis is directed toward the center of the
sun and the Workshop axis 1s in the orbital plane.

**Bl and B. are considered as rigid bodies.

2
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Let Yq and Y, measure rotations about the gimbal axes. Introduce

two sets of mutually orthogonal unit vectors, 11, il’ k. and 12,

=1

12, 52 such that ;2, 12, 52 are respectively parallel to X5¥ 525

and such that the two sets of vectors are aligned when yl=y2=0.

The unit vectors are oriented in the spacecraft such that Jo is

parallel to the experiment optical axis and such that the gimbal

axes corresponding to Yq and Yo are respectively parallel to i

1

and 52. It follows that the two sets of unit vectors are related

by the transformation

~ . - - - . -
1 °Yp =S¥ 0 1o
dy |7 | o172 Y105 SV o

L5 ] Lsvisve SY1°Y2 ¢vid Lk

where cyq = cosYl, SYl = sinyl, CY, = COSY,, and SY, = sinyg.
Vectors p and g specify the position of Cl and C2,
relative to 0.

the respec-

tive mass centers of B1 and B2,

For the AAP Cluster,*¥ 11 is assumed to be parallel to
the Workshop axis and directed toward the CSM.

3.0 ATTITUDE DYNAMICS

3.1 Kinematics

Let m, and m, be the masses of B1 and B2; let C be
the location of the mass center of the composite body Bl and

and r, as the position vectors of C, and

B,, and introduce r 1

C

n

1
, respectively, relative to C:

N

¥The Cluster (See Figure 2.2) comprises an S-IVB Orbital
Workshop, its solar arrays, an Airlock Module, and a Multiple
Docking Adapter (MDA) with a Command and Service Module (CSM)
docked to the end of the MDA and a Lunar Module Ascent Stage/
ATM docked to the side of the MDA.

(2.1)
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Mo

Iy = mpem, (p-q) (3.1)
-m
_ 1

Lo = mjtm, (p-9) (3.2)

Velocities and accelerations in this analysis are
tgken relative to C rather than an inertially fixed point,
since the former are easier to compute and the change of refer-
ence has no effect on the attitude dynamics.¥ By differentia-
ting (3.1) and (3.2) in an inertial reference frame, we obtain
the velocities of the bodies' mass centers:*¥

C m B B
1 _d _ 2 1 2
V™ =350 = m, (w " xp-wxq) (3.3)
C -m B B
2 d 1 1 2
VO r® L T, (0 xp-etxg) (30
Bl B2
where o and w are the angular velocities of Bl and B2,

respectively. Accelerations follow by differentiation of the
velocities:

B B B B B B
= —————[b Ty p - W ° x q+ . x(w 1xg)— W 2 x(w 2xg4
2

(3.5)

¥Whittaker [8] shows that the attitude motion of a rigid
body i1s the same as 1f the mass center were inertially fixed
and the body subjected to the action of the same forces. This
iecid
gid

-

theorem mav he ceneralivad £a Inelinde gvateme nf ronnected v
Wadd\or L il lllu‘y Ao 5\;&1\/*\.‘:_&.*“\/\* v e d A e VAN uJuuv;uu e N WA dd AN v A S

bodies such as those considered here.

¥¥Recall that p and g are known vectors fixed in B1 and B2,

respectively. Derivatives here and in the eguations that follow
are obtained by use of standard formulas for relating derivatives
taken in two different reference frames; see Reference 9 or 10.
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e oa B
2 at —
-m B B B B B B
1 |-71 2 1 2 2
=m1+m2[.“l xp-b xg+e x (wixp) - x (e X_Cl)}
(3.6)
.Bl .B2
in which w = and w = are the angular accelerations of B, and B,.
Three variables Uys Uy, and u3 are introduced such that
B,
w %= ugd, tugd, +ougk, (3.7)
Then according to the definitions of Yq and Yo
B B
It follows that
B B
. 2 _ d_ 2 _ . L] .
T =g e T udy tudy tugly (3.9)
bBl _a Bl
L =3t ¥
B . . B
=(:)2— i, - v-sk +(§ti +\'(k)xw2-—..i x k
£ Y1=1 2=2 1=1 pLd) = Y1Yad1 X %o

(3.10)
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3.2 Forces and Torques

The D'Alembert inertia forces for Bl and B2 are

¢y

*¥ = _

F# m,a (3.11)
Cs

¥ = _

F¥ m,a (3.12)

The inertia torque for B1 1s obtained by differentiating the
angular momentum of this body:

T = _T ~ ¢ 4 ~ = T x I T« g (3.13)
~ - - N -

where T 1 1s the inertia dyadic of B, for C,, i.e.,

B

: Pt ¢ L Mk
t ooty Y Iy Nl
# ML)+ Njkod) b Kjkoky (3.14)
Il’ Jl, Kl are the (centroidal) moments of inertia of Bl’ and Ly,
Ml’ Nl are products of inertia, defined generically as
Py = -j’ En dm (3.15)

As the optical axis of the ATM experiment package, and indeed of
mostl astronomical telescopes, is nearly parallel to one of the
principal axes, it is assumed that the principal axes of B2 are

parallel to 12, DY and 52. Hence, an expression for the inertia

torque for B, is

2
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T8 = [upuy(ipmKp) = 0yTola, + [uguy (ky1,) - 172 )L,

+ [ulu2(12—J2) - Uk, |k, (3.16)

In additlon to the inertia forces and torques certain
active forces and torques act on B1 and B2. These are

the torque exerted on the three CMGs by Bl‘ (S0 far

as vehicle dynamics is concerned, the CMGs are treated
simply as devices capable of exerting torques on their
mountings.) The computation of T, 1s discussed in

Section 4.0.

zg = Eglil + zgzgg: the sum of those torques exerted on
B.2 by Bl about the vernier gimbal axes, including

torques contributed by the torque motors, the flexure
pivots, and a wire bundle crossing the interface. T

is discussed further in Section 5.0.

El and F,: the resultant of all forces acting on B, and

1
B2, respectively, except for forces exerted between

the bodies. These include gravitational, aerodynamic,
and crew motion disturbance effects, as discussed in
Section 6.0.

21 and T,: similarly, the resultant of all torques exerted

1 and Eg
acts at C2, excluslve of torques exerted between the

on B1 and B2,respectively, when El acts at C

bodies and torques exerted by the CMGs; refer to
Section 6.0.

3.3 Equations of Motion

Five dynamical equations may be written in terms of
the variables l""’uS’ the first three of these being defined
e

u
by (3.7) and th
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u)-l = Yl (3-17)

5% Yo (3.18)

The equations themselves are obtained by use of a method due to
Kane and Wang [11,12]. To this end, two types of quantities,
C B
v i,u and w i,u , are introduced, thelr definitions being such
r r
that

& O
v 1= Z vi, uw, o, 11,2 (3.19)
r=1 r
r
L1 Z T 1=1,2 (3.20)
— — ’u r b 1] .
r=1 r
Ci Bi
This is to say that V and w - may be expressed as linear com-
C
binations of the ur's and that the coefficlents V i,u and
B

. r
w 1’u may be obtained by inspection of (3.3), (3.4), (3.7),

r
and (3.8). For example, from (3.7), (3.8), and (3.18),

The dynamical equations may be written compactly as

c C B
(F¥+F,) - U + (FA+F,) + V ° + (T*-T T 4T.) « o !
-1 =1 - ’u =2 =2 - ’u =1 =¢ =g =1 - ’u
r r r
B2
+ (-'I—‘g+2g+i") . E. . = R r=1,"',5 (3_21)
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These five equations may be written as explicit first-order
differential equations in u1,°~-,u5; but such an expression

of (3.21) is so lengthy as to be of little value here, so the
explicit equations will not be presented.*® One may determine

by examination, however, that ﬁl,-°-,h5 appear linearly in
(3.21), and these equations may thus be written

PU = Q (3.22)

where P 1s a 5 x 5 matrix of functions of U and t, Uls a 5 x 1
matrix composed of ul,---,uS, and Q is a 5 x 1 matrix also com-

posed of functions of U and t. One may obtain P and Q by
expressing the accelerations (3.5), (3.6), (3.9), and (3.10) as

linear combinations of hl,---,hs, together with a term indepen-
dent of hi’ i=1,+++,5; the inertia forces and torques (3.11),

(3.12), (3.13), and (3.16) are expressed in the same form. By
performing the operations indicated in (3.21), the elements of
P and Q are thus generated, respectively, from the coefficients

in the linear combinations and from the terms independent of hi

(the latter terms also include contributions from the active
forces and torques).

Five first-order equations in addition to (3.22) are
necessary to solve for the motion. Three of these are the
kinematical equations consistent with the 3,2,1 Euler angle
sequence described in Section 2.1:

r-. ' r—' — r “9 - 3
Ug o) 1 sin¢tane cosétane uq
ﬁ7 =le8f=1]0 cos ¢ -sind U, (3.23)
u 1 0 sin¢/cos® cosé¢/cose| lu

L 8J Llp.a - - L. 3_4

¥Considerable simplification in (3.21) may be achieved by
making certain approximations, and it then becomes reasonable
to express the equations explicitly. (The author has obtained
such a set of equations by linearizing (3.21).)
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The remaining two equations are obtained from (3.17) and (3.18):

9 Yl‘ = uu (3.2}4)

glo= ;2 - (2.25)

k.0 CONTROL MOMENT GYROSCQPE SYSTEM

4,1 Control Torque

In this section, an expression for the control torque,
gc, exerted on the CMGs by the carrier, Bl’ is developed. Note

that the torque exerted by the CMGs on B, is merely —gc.

1
The SIXPAC [13] CMG system 1s the system which is
simulated. The system contains 3 gyros; parameters defined
below that are associated with a specific gyro bear the sub-
script 1, 2, or 3. Figure 4.1 shows how the CMGs are mounted
with respect to the coordinates of Bl‘ The CMGs are shown with

their inner and outer gimbals at the zero position. The gyros
are numbered according to the body axis along which the spin
axis lies in this zero position.

Define three unit vectors h,, h,, and 23 that are

parallel to each of the spin axes and let ET be their sum. Let

h designate the magnitude of the spin angular momentum for each
gyro. Then, the total spin angular momentum vector of the CMG
system is

= h(hy + b, + hy) (4.1)

T =2 =3

The control torque is merely the time rate of change with
respect to inertial coordinates of the total spin angular
momentum vector.*® This can be expressed as

B

i = (3 +
LC nKE.T ﬂ X .Q.T)

~~
£
no

S

*¥The control torque Ec actually includes terms in addition

to the time derivative of spin angular momentum; however, these
other terms are small and may be neglected here.
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where hT is a time derivative with respect to the body coordi-

nates of Bl' It is most convenient to find hT from the relation

By = (wyxy) + (upxhy) + (ugxhy) (4.3)

where W5 85, and 23 are the relative angular velocities of the

gyro inner gimbals with respect to the body coordinates of Bl'
At this point we define the column matrices

.

=
'U).]

1
(4.4)

e
[
Q.
N
-
joo°
It
m'
no

Q
w
L
I e
oy

which give the time derivatives of the outer and inner gimbal
angles, respectively.

Equation (4.3) can be organized in the form
h,=Ga+ F B (4.5)

where G and F are each 3 x 3 matrices whose elements are trigo-
nometric functions of the outer and inner gimbal angles.
Substituting (4.5) into (L4.2) results in the equation which is
programmed for the control torque:

=h(Ga+FB+w  Xhy (4.6)

T
=C

4,2 CMG Control Laws

A control law for the system is just an expression

r a and é in terms of the system state variables, namely,
e titude and the angular velocity of B1 with respect to

inertial coordinates and also the gimbal angles of each CMG.
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To obtain a control law, a 3 x 1 column matrix v is first in-

troduced in order to establish a constraint between é and é.

That is, a and B are expressed as

(h.7)

EX
L}
=3

|<

oo
[}
oo

|<

where A and B are 3 x 3 matrices whose elements depend on the
method chosen for introducing the constraints.

Matrices A and B may be determined in the following
way. Imagine v to be a desired control torque per unit of spin
angular momentum. Now express v in the 1nner gimbal coordinates
of each gyro. Observe that the vector wJ —j’ j=1,2,3, is

normal to hJ i.e., its component along hJ is zero. By equating

the elements in v (in inner gimbal coordinates) to corresponding
non-zero elements of CF X Ej’ relations of the following form

are obtained:

(1 x 3 row matrix)v

Q
il

(4.8)

(1 x 3 row matrix)v

m.
It

These relations when organized in matrix form yield the con-
straint equations (4.7).

If v is now specified as a function of the system
state variables and substituted into (4.7) a control law for
the CMGs is obtalned. It is implied in such a control law
that gimbal angle rates are commanded. Indeed this is the
case for the CMG system on the ATM. The implementation of
gimbal angle rate commands requires the use of a speed control
servomechanism for each gimbal axis.

Four different control laws have been studied for
possible use with the SIXPAC CMG system. These are generally
known by the followling names: Langley Control Law, Cross-—
Product Law, H-Vector Control, and Closed-Loop Torque Control.
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Both the Langley Control Law and the Cross-Product Law use the
same definition for v. They differ in that certain terms and
factors are deleted from the A and B matrices for the Langley
Control Law. Consequently, there are only 3 different defini-
tions for v that have been studied, and these will now be
defined.

It is necessary to know the attitude of the carrier,
Bl’ with respect to inertial coordinates. Let y',6', and ¢!

denote a 3,2,1 Euler angle sequence which defines the attitude
of Bl with respect to the axes X3Y4%g (defined in Section 2.1).

Since the attitude excursions of the experiment package, B2,

and B1 are small we may write

' = ¢ = vy = ug - ug

6' = 8 = 1

V=¥ - vy T Ug - Uy

Define the attitude error column matrix

¢1
e =10 (4.10)

lpl

Basic to all the control laws 1s a linear combinatilon

Bl_*

of € and w That is, we define

By

[}
1
=
o
|
+
=~
|_l
e
P
=
’_l
'_l
g

1

#Instead of w ~ 1t would be acceptable to use the vector l-é'-],

w'
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where K0 and K1 are 3 x 3 dlagonal matrices of attitude error

gains and rate feedback gains, respectively.

The column matrix v for each of the control laws 1is
defined as follows:

Langley and Cross-Product Laws vV =e

t

H-Vector Control v =J( (e - ET)dT (4.12)
0

Closed Loop Torque Control V== éT

By using (4.5) and (4.7) it is easy to show that with Closed
Loop Control

v=(I+GA+FB) 1, (4.13)
where I is the 3 x 3 identity matrix.

The CMG system for the ATM is currently being designed
with H-Vector Control. The reason given i1s that this control
law, while requiring a little more electronics, has minimal
torque cross coupling and has a frequency response that is
relatively insensitive to the orientation of gyro gimbals.

5.0 EXPERIMENT POINTING CONTROL SYSTEM

5.1 Description of the EPC

As described in Sections 1.2 and 2.2, the experiment
package is attached to the carrier by means of a two degree of
freedom system of gimbals. Certain torques act about each of
the two associated gimbal axes, and it is the purpose of this
section to provide an analytical description of these torques.
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Attitude control of the experiment package about the
two axes*® normal to the optical axis is provided by a feedback
control system that obtains error signals from fine sun sensors
(or, in the case of stellar astronomy, star sensors in the teie-
scope optics) and rate gyros aboard the experiment package and
that provides commands to torque motors located on the gimbal
axes. The present mathematical model provides for linear feed-
back of attitude error and attitude rate, except that the torque
output is limited so that it never exceeds the capability of the
torque motor.

5.2 Extraneous Torgques

Other torques are exerted across the gimbals by the
gimbal support mechanism itself and by cables crossing the
interface for the transmission of electrical power and data.
Flexure pivots are used to support the ATM experiment
package within its gimbals; these devices may be treated
analytically as linear springs, there being essentially no
friction or deadband associated with them. Torques associated
with the cable(s) present more of a problem: approximately
1000 wires are currently anticipated in the ATM cable, and
measurements of the bending properties of such cables [14]
indicate a substantial hysteresis effect.

The mechanical behavior of the wire harness is in-
fluenced highly by the construction of the harness and by its
route as it passes from the carrier to the experiment package.
Figures 5.1 a-c, taken from Reference lﬂ, 1llustrate the force-
deflection*#* properties of three different harnesses (1206, 1078,
and 384 conductors, respectively) which are routed across the
gimbals in three different ways. One may see that these curves
differ in slope (stiffness), enclosed area (hysteresis
effect), and symmetry about the origin. Rather than try to
portray the harness behavior analytically in terms of a hystere-
sis loop, it is more convenient to represent it

¥Attitude control about the optical axis is not as critical
as that about the transverse axes, at least so far as the ATM
experiments are concerned, and 1t is expected that the CMG sys-
tem aboard the carrier can provide satisfactory attitude control
about thils axis. However, large aperture telescopes, such as
those contemplated for future missions, will have more stringent
attitude error requirements about this axis, and it may then be
necessary to add a third axis of control to the EPC.

*¥%¥Tn Reference 14 transverse forces at the ends of the harness
are actually measured. However, it 1s the moments that these forces

groduce about the gimbal axes that are of lmportance here.
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as a sum of a constant torque (e.g., the force-intercept of the
hysteresis 1oop) and a torque which is proportional to gimbal
angle (i.e., a linear spring).

It is possible with this representatlon to determine
the maximum force-intercept and spring rate consistent with
a given level of performance, the maximum value of these two
parameters thus being harness desigh constraints.

5.3 Control Torgues

The torques Tgl and ng about the gimbal axes (see

Sections 3.2 and 3.3) are computed as described in the two
previous sections. They are

Te1 = Fga = Koy ~ Kpqvy * Ty (5.1)

ng = —Kgcw - Kgdu3 - Kg2Y2 + Th2 (5.2)

where Kga,---,Kgd are feedback gain constants associated with the EPC,

u, and ug are defined by (3.7), Kgl

for the flexure pivots and the wire harness, and T

and ng are spring constants
nl and Th2
are the constant torques associated with the harness.

6.0 EXTERNAL TORQUES AND FORCES

6.1 Introduction

In addition to those discussed in the previous two
sections, certain forces and torques act to influence the atti-
tude of the carrier and the experiment package. These include
gravitational, magnetic, and aerodynamic effects and also solar
pressure. The latter may be shown to be negligible in compari-
son with the others for near-earth orbits,* and magnetic effects
are also relatively small for the AAP Cluster Configuration [16].

¥For the AAP Cluster, a solar radiation pressure of

9 x 1072 dyne/cm2 [15] may be shown to give rise to a moment
whose magnitude is on the order of 0.01 ft 1lb. This is two
orders of magnitude less than the peak aerodynamic torque at
230 NM.
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On the other hand, in addition to gravitational and
aerodynamic effects it is convenient to treat motlions of the
crew within the carrier as forces that act on the carrier.
Strictly speaking, the crew acts as distinct masses moving -

about within the carrier. However, the results of exnerimen-
tal work done on astronaut motion is reported in terms of forces,

which makes it a more straightforward matter to consider the
crew as massless force generators.

6.2 Gravitational Effects

Gravitational forces acting on the carrier and the
experiment package, respectively, are given by#¥

—GMmi
EGi = R3 31 s i=1,2 (6.1)
i

\

where G is the gravitational constant, M is the mass of the
earth, and Bi is the position vector of Ci relative to the

center of the earth, Ri being the length of Bi‘ Equation (6.1)

is unsatisfactory for numerical computation, however, because
EGl and EGZ are comprised almost entirely of components which

have no effect on the attitude dynamics of the vehicle. Thus,
a formula for the gravitational force is sought which avoids
the loss of significance associated with (6.1). To this end,
let R be the position vector of C relative to the center of the
earth so that

=R + r. (6.2)

The total gravitational force acting on the spacecraft is

) —GM(ml+m2)

o =g Y 52 " 3 (6.3)

¥
Since B, 1is not a particle this formula 1s only approximate;

the approximation is maintained to the same order as the most
significant term of the gravitational torque expression. Similar
approximations are used throughout Section 6.2.
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1 s
Forces F,, and Fi, are introduced as

m

Fl, = —4— T (6.4)
i ml+m2 -G
and these in turn are used to define gl and 22:
= 1 +
Fog = Has v L&y ~ (6.5)

Now, Eél and Eé2 satisfy the hypotheses of the theorem in

Appendix I, so they can be neglected without affecting the
vehicle attitude dynamics. The remaining gravitational forces,

gl and £2, are evaluated by using (6.1), (6.3)-(6.5):
R, R
f. = —GMm.(—— - ——) (6.6)
B H{gr3 g3
i
Equation (6.2) is used to eliminate R; and R; from (6.6).
2 2 2 2 .
R{ = (R+r;)° =R™ + ri + 2R - r, (6.7)
™ 2 —3/2
-3 _1 R T
R,> = ==|1 + 2 = + | =
i R3 i R ry R R
1 [ Brrg)ry
= =1 - 3 — + ... (6.8)
R3 R ry R

Within the order of approximation noted earlier, gi, obtained

from (6.2), (6.6), and (6.8), is given as
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-GMm

Rr

Bryry
: R—] - _} (6.9)

Simplification and further approximation yields the expression

-GMm,
£ = e [gi - 3(£i'p_)Q] (6.10)

where

=
[
o
N
0

(6.11)

The gravitational torques acting on B1 and B2 are

computed from the formula

(6.12)

3

n
W
= |&
=

S H
o

B.
where I 1 45 the inertia dyadic of B as defined by (3.14).

llence, fornulas (6.10) and (6.12) may be used to compute those
portions ©f the gravitational attraction that influence the
vehicle attitude dynamics.

6.3 Aerodynamic Effects

As in the case of gravitational forces, there will in
general be an aerodynamic force and an aerodynamic torque asso-
ciated with each body. However, in view of the difficulties
involved in assessing the magnitudes of these four quantities,
some assumptions are made to facilitate the calculations. This
approach has the advantage that the magnitude of the aerodynamic
effect may be determined in terms of just one parameter, rather
than the four parameters that would otherwise be required.

We first assume that the moment of the aerodynamic
forces acting on the experiment package about its mass center
is zero. This is a reasonable assumption for the ATM experi-
ment package since it is relatively small and 1s symmetric and
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reasonably homogeneous. Next assume that the resultant aero-
dynamic forces on Bl and B2 are proportional to their respective

masses and dlrected parallel to the vehicle orbital velocity
vector. According to the theorem in Appendix I these forces do
not influence the attitude motions of the vehicle. It is there-
fore necessary to consider only the aerodynamic torques exerted
on the carrier, and the problem of computing aerodynamic effects
on this two-body vehicle reduces to the simpler problem of com-
puting the aerodynamic torque on a single body. Another set of
assumptions can be used to bring about essentially the same
simplification: the ATM experiment package will quite likely be
cooled by a cold sleeve attached to the carrier which covers all
but the ends of the experiment package; under these conditions
the experiment package 1s shielded from the airstream, and only
the aerodynamic effect on the carrier need be considered.¥*

For a 230 nautical mile circular orbit the aerodynamic
torque on the AAP Cluster 1s small in comparison with the gravi-
tational torque [17], and 1t therefore seems that a simple model
of the aerodynamic loads is quite sufficient. More elaborate
models of the aerodynamic loads [ 18] on the AAP Cluster are
available if more precision is needed or if the orbital height

is lowered to the point that aerodynamic loads become appreciable.

The aerodynamic drag force EA

Jjected area Ap traveling at speed V 1n a direction parallel to a

acting on a body of pro-
unit vector m is given by

2

F=-2pV°A Cym (6.13)

P

where p is the atmospheric density and C, is the drag coeffi-

D
cient, which is determined experimentally for a particular shape.
For circular cylindrical bodies of large length-to-diameter

ratio A_ may be approximated in terms of the broadside area A

(length times diameter) and a unit vector i which is parallel to
the axis of the cylinder

¥The aerodynamic force on the c
tude dynamics in this case, since th
cannot be invoked.

arrier does affect the atti-
e result of Appendix I
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Ap = Alm x i (6.14)

A large portion of the broadside area of the AAP Cluster is due
to the solar arrays (see Figure 2.2), and although such a con-
figuration is not axisymmetric as is a cylinder, one may develop
a formula for the worst-case aerodynamic loads by using (6.14)
if A is taken to include the solar array area. Let rcp be the

distance from C1 to the center of pressure of B and assume

1’
that the center of pressure is located such that its position

vector relative to C, is rcpi' The aerodynamic torque on B1

1 is

then simply

T =r 4ixF=2,v%C

=A cp= T = 2

D rcplm x ij(m x 1) (6.15)

Rather than use this formula, 1t is more convenient to express
the aerodynamic torque in terms of a parameter o such that

EAl = a % g% (J-I)|m x i|(m x i) (6.16)

where I and J are, respectively, the minimum and maximum moments

of inertia of Bl' Then o is the ratio of the maximum aerodyna-

mic torque acting on B, to the maximum gravity-gradient torque

1
acting on this body; typical values of o run from 0.05 to 0.20
for the AAP Cluster in a 230 nautical mile circular orbit [17].

Large variations in aerodynamic torque are also caused
by changes in atmospheric density over a circular orbit. This
so-called diurnal bulge effect may be approximated by introducing
a', a modified value of a.

a' = 745 [1 - 8 cos(at + y)] (6.17)
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In this formula 9 1s the orbital rate, and 8 and y are para-
meters related to the diurnal bulge; B typically has a value of
0.6 for a 230 nautical mile orbit, and y is used to locate the
bulge on the orbit (normally y = 60°). Replace o in (6.16) by
a' to account for varliations in density.

6.4 Crew Motion

Crew motion generally produces much larger vehicle
attitude errors than eilther gravitational or aerodynamic effects.
Not only are the forces and torques produced by the crew larger
than those due to gravity and drag, but they also occur faster
and may thereby tax the PCS's ability to respond fast enough.

Studies have been performed at the Martin Marietta
Corporation concerning the motions of and forces excerted by an
astronaut while in a state of free fall (so-called zero g) as
he performs tasks typlcal of AAP missions [19]. For purposes
of ATM PCS design, four crew motions have been selected by MSFC
as standard crew disturbances [20]. Descriptively, the four
motions are called bounce walk, wall push off, arm motion-C3M,
and arm motion-LM; the details of these motions are given in
Appendix II.

7.0 DIGITAL COMPUTER PROGRAM

7.1 Description of the Program

A digital computer program has been written to perform
operatlions indicated in the foregoing. Basically, the program
reads input parameters relating to vehicle dynamics and the con-
trol system; it solves equations (3.21), (3.23)-(3.25), and (4.7)
by means of step-by-step numerical integration; and lastly it
prints the independent variable (time), specified state variables,
and certain indicators at specified time intervals. In the pro-
cess of solving the differential equations, forces and torques
due to gravitational effects, aerodynamic drag (subject to the
parameter a), and crew motion (one of the eight disturbances
described in Appendix II) are computed.

The program, written in Fortran V, is comprised of a
main program, which handles input/output and provides control
over the integration process, and several subroutines which per-
form specific functions. The principal parts of the program are
included herewith as indicated below, the remainder being avail-
able from the author on request.
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Program
Name Appendix Function

Main IIT input/output, control over
integration

Subroutine F v define the differential
equations, perform all control
system computations

Subroutine TF \Y compute grav. and aero.

effects, combine these with
crew disturbance

7.2 Symbol Correspondence List

The program listings themselves are well documented
fo provide specific information about the program. However,
since the symbols used in the foregoing sometimes differ from
the corresponding symbols used in the program, the following
list should be useful for correlation purposes.

First Occurrence

Symbol in in the Text Symbol in
the Text (Section No.) the Program

¢d’ed’wd 201 AD

656,10 2.1 : A(=U(6),++-,U0(8))
Y1575 2.2 GAMMA 1(=U(9)),GAMMA 2(=U(10))
R,g 202 P’Q
m, M, 3.1 M1,M2

C C
v 1,\_[ 2 3.1 _

C C
a l,g 2 3.1 AC1,AC2

B B

@ THuw 3.1 OMB1,0MB2
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First Occurrence

Symbol in in the Text Symbol in
the Text (Section No.) the Program

B B
o toa ° 3.1 DOMB1 ,—
UpsUss e 3.1. U(1),0(2),+--
F2,F% 3.2 F1STAR,F2STAR
Ii,gg 3.2 TlSTAB,T2STAR
Bl
% 3.2 EYE]

Il,Jl,Kl 3.2 I1,J1,K1
LM 5Ny 3.2 1J1,IK1,JK1
I,,9,5K, 3.2 I2,32,K2
Le-L, 3.2 TC,TG
EI’E2 3.2 Fl,F2
T,,T, 3.2 T1,T2

Cl C2
vV o, ,V -, 3.3 vC1i,vce

r r

B B

L l’ ' 2: 3.3 OMBIM,
u u
r r

h .1 H
asB 4.1 DALPHA ,DBETA
aps8q 4,1 U(11),U(1L)
G,F 4.1 GG,FF
v 4,2 \
A,B 4,2 AM,BM
£5€ 4,2 AMAD,E
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First Occurrence

Symbol in in the Text Symbol in
the text (Section No.) the Program
T 5.3 TG1,TG2
8,78, ’
T LT 5.3 TWIREL,TWIRE2
h h
1 2
n,n 6.2 Ni,N2
£.5, 6.2 SF1,SF2
Ty »Tg 6.2 TG1,TG2%
1 2
0,8,y 6.3 ALP,BET, GAMMA
al 6.3 ALPP
m 6.3 M
zAl 6.3 TAL

1022-PGS-mef

Attachments

P % Dkt

P. G. Smith

Appendices I through V

References
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APPENDIX I

Consider a dynamical system comprised of two connected

bodies, each acted upon by a given set of forces. The attitude

motions of such a system are unaffected by the addition of two
more forces, provided these forces have the following properties:

1.

2.

One force, F

1 acts at the mass center of body 1.
The other, 32, acts at the mass center of body 2.
El and E2 are parallel and have the same sense.
The magnitudes of El and §2 are proportional to the

respective masses my and My 5 i.e.,
2.2 _ 2.2
moly = mE,
n
BODY | BODY 2

FIGURE I-1



|

BELLCOMM, INC. I-2

Appendix I (contd.)

. ¥
Proof: El

as they contribute to the generalized active force Fr’ defined

and E2 affect the motion of the system only insofar

in this case as
s r=l,***,n

According to hypotheses 3 and 4, F. and 32 may be written in

1
terms of the unit vector n and the constant A as

El = Aml n > 'EZ = >‘m2 n
and so
C C
= . 1 2
Fl” = An (ml v 4 + m2 v ‘U
r r
Since C is the mass center of the system,
my £y +tmyr, =0
which may be differentiated, yielding
dr - dr c,/C c,/C
=1 =2 _ 1 2 _
mogg tm g™ Y tmy ¥ =0

¥The proof employs concepts used in Section 3.3 and in
particular 1s based on the same approach as that outlined in
Reference 11 (p. 575).
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Appendix I (contd.)

The last equation must hold regardless of the values of u
and this leads, by means of equation (3.19), to

C c./C C c,/C
v 1 _ v 1 + YF , v 2 _ v 2 + XC
and it follows that
C c./C C c,/C
v 1, =V 1 , + VC’u , v 2’u =v 2 . + Xp
Up Up r r r
The generalized inertia force is thus
Cl/C 02/0 C
F o= -Im V ‘u +m, V Su_ + (ml+m2)z ’ur]

1°°

The sum of the first two terms in brackets i1s zero, as estab-

lished above, Fr being reduced to

C

2u

F_ = A(ml + mg)g -V .

r

~
2

VC‘
— ‘u
r

of the system and not with attitude motions about the mass

Lhe mass ¢

is clearly connected with the motion of

center. Because of the independence of the motion of the mass
center and motions about the mass center, the last equation

nter

shows that Fr has no influence on the attitude motions of the

system.
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APPENDIX IT

STANDARD CREW DISTURBANCES USED FOR ATM PCS DESIGN

The motion of an astronaut within the carrier may be
thought of as producing a force (on the carrier) whose measure
numbers are FDx’ FDy’ FDZ and a moment having measure numbers
TDx’ TDy’ TDZ when the force acts at the mass center of the
carrier. For the standard crew disturbances [ 20] the measure
numbers are defined in terms of three time dependent functions

Dl’ D2, D3 as follows:
TDx - TDy - FDz =0
TDZ = XDD2 - yDDl + D3
Fpx =01 o Fpy T Do
where Xns Ypo Zp determine the position of the astronaut rela-

tive to the carrier mass center. Definitions of the functions
Dl’ D2, D3 for the standard crew disturbances are given in
Figure II-1,* and the corresponding astronaut locations are
given in the following table.

Name xD(ft) yD(ft) zD(ft)
bounce walk¥¥ -38.1 -9.8 -9.8
walk push off¥¥ -35.1 0 0
arm motion-CSM 23.0 0 0
arm motion-LM 14.1 9.8 0

*Dl and D2 actually correspond to forces and D3 corresponds

to a torque in an astronaut-fixed reference frame. The expres-
sions above may be obtained by properly rotating and translating
the astronaut relative to the vehicle and by letting zD=0 50 as
to avoid cross coupling.

¥%¥At the base of the Orbital Workshop.
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Appendix II (contd.)

Because of spacecraft symmetry relative to the xy
plane, the four standard crew disturbances defined above only
influence attitude motions about the z axis. The other axis
perpendicular to the experiment package optical axis, namely
the x axis, is also of interest so far as crew motion is con-
cerned since attitude error about telescope transverse axes is
more critical than error about the optical axis itself. For
this reason we introduce four additional crew disturbances,
corresponding to the four above, which affect attitude motions
about the x and y axes (attitude motions about these two axes
are coupled due to lack of symmetry). The table of astronaut
locations and Figure II-1 hold for both the standard and the
additional crew disturbances, but the torques and forces for
the additional disturbances are computed as follows:

Ty, = FDy =0

TDX = yDDZ

TDy = ZDD1 - XDD2 + D3
F._ =D » Fp, =D,

Dx 1
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TITLE
AUTHOR
DATE

PURPOSE

METHOD

INPUT

APPENDIX III

'MAIN PROGRAM ;

DYNAMICS OF A SPACECRAFT WITH GIMBAL MOUNTED TELESCOPE

Co Fo BANICK

7-26-67

TO STUDY THE DYNAMIC BEHAVIOR OF A TELESCOPE ATTACHED
TO A CMG-CONTROLLED SPACECRAFT BY MEANS OF A VERNIER
GIMBAL CONTROL SYSTEM

DIFFERENTIAL EQUATIONS REPRFSENTING THE VEHICLF DYNAMICS
AND THE TWO CONTROL SYSTEMS ARE SOLVED NUMERICALLY AS
AN INITIAL VALUE PROBLEM

THROUGH A

GAMMA]
GAMMA?2
U

uts4)

uesy
A

AD .

ALPHA(T)
BETALT)
GMO

GM1

p

M1 M2
11+J1,4K1
TJ1s 1K1

JK1
129J24K2

KGA

KGB

NAMELTST CALLED -INPUT-

X-AXTS VERNIER GIMBAL ROTATION (DEG)

Z-AX1S VERNIER GIMBAL ROTATION (DEG)

THE VECTOR (U(1)sU(2),U(3)) IS THE INITIAL
ANGULAR VELOCITY OF THE TELESCOPE (DEG/SEC)
INITIAL RATE OF GAMMA1l (DEG/SEC)

INITIAL RATE OF GAMMA2 (DEG/SEC)

A THREE-DIMENSIONAL ARRAY WHICH DESCRIBES

THE INITIAL ATTITUDE OF THF TELESCOPF RFLATIVE
TO THE DESIRED ATTITUDE, EXPRESSED IN EULER
ANGLFS (DEG)

A THREE-DIMENSIONAL ARRAY WHICH DFSCRIBES THF
DESIRED ATTITUDE OF THE TFLESCOPE WITH RESPECT
TO INERTIAL COORDINATES (DEG)

OUTER GIMBAL ANGLE OF THE ITH GYROSCOPE OF
THE CARRIER AT TIME TO (DEG) '
INNER GIMBAL ANGLE OF THE ITH GYROSCOPE OF
THE CARRIER AT TIME T0 (DEG)

CMG ATTITUDE ERROR GAIN CONSTANT MATRIX

( (RAD/SEC)/RAD ERROR)

CMG ATTITUDE RATE GAIN CONSTANT MATRIX

( (RAD/SEC)/(RAD/SEC)ERROR)

POSITION VECTOR OF THF MASS CENTFR OF THF
CARRIFER RFLATIVE TO THE CFENTER OF ROTATION

OF THE VERNIER GIMBALS (FEET)

POSITION VECTOR OF THE MASS CENTER OF THF
TELESCOPE RELATIVE TO THE CENTER OF ROTATION
OF THF VERNIER GIMBALS (FEET)

MASSES OF THE CARRIER AND TELFSCOPE,
RESPECTIVELY {SLUGS)

CENTROIDAL MOMENTS OF INERTIA OF THE CARRIFR
(SLUG/FT*#2)

CENTROIDAL PRODUCTS OF INERTIA OF THE CARRIER

(SLUG/FT*%2)

CENTROIDAL PRINCIPAL MOMENTS OF INERTIA OF
THE TELESCOPE (SLUG/FT#%2)

ATTITUDE ERROR GAIN ASSOCIATED WITH GAMMA1
(FT~LB/RAD ERROR)

ATTITUDE RATE GAIN ASSOCIATED WITH GAMMA1
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Appendix III (contd.)

KGC
KGD
KG1sKG2

TWIREl»
TWIRE2

TMAX1,

TMAX2
‘CRUDIS

ALP

GAMA
BET
OH
INDG

ALPHLM
BETALM

DOTMAX

DOTMIN

KSL
T0
ORBITS

DTPRNT
DTMAX

ERBND

III-2

(FT-LBI(RAD/SEC)ERROR)
ATTITUDE ERROR GAIN ASSOCIATED WITH GAMMAZ
(FT-LB/RAD ERROR) .

ATTITUDE RATE GAIN ASSOCIATED WITH %AMMAz
(FT=LB/(RAD/SEC)ERROR) ‘

SPRING CQNSTANTS CORRESPONDING TO GAMMA1 AND
GAMMA2 RESPECTIVELY (FT-LB/RAD)

CONSTANT TORQUES EXERTED ON THE TELESCOPE BY
WIRE BUNDLES CROSSING GIMBALS 1 AND 2,
RESPECTIVELY

MAXIMUM VERNIER GIMBAL MOTOR TORQUE FOR
GIMBALS 1 AND 2

INDICATES THE TYPE OF CREW DISTURBANCE
ABS(CRUD1S) DISTURBANCE

1 BOUNCE WALK

2 ~ WALL PUSH OFF

3 ARM MOTION - CSM
4 ARM MOTION - LM

CRUDIS 1S POSITIVE FOR DISTURBANCES ABOUT THE
Z AXIS AND NEGATIVE FOR DISTURBANCES ABOUT THE
X-Y AXES

MAGNITUDE OF THE MOMENTUM OF EACH GYROSCOPE
(FT-LB-SEC) .

VARIABLE BETWEEN 0« AND 1. WHICH SPECIFIES
THE MAXIMUM VALUE OF THE AERODYNAMIC TORQUE
IN TERMS OF THE MAXIMUM VALUE OF THE GRAVITY
GRADIENT TORQUE

ORBITAL LOCATION OF DIURNAL BULGE (DEGREES)
DETERMINES THE MAGNITUDE OF THE DIURNAL BULGE

.ORBITAL HEIGHT (Ne MILES)
IF INDG=1, THE OUTER AND INNER GIMBAL ANGLES

OF THE CARRIER ARE REQUIRED TO REMAIN WITHIN
GIVEN BOUNDS. IF INDG=0s NO BOUNDS ARE GIVEN,
AND THE PART OF THE PROGRAM WHICH TESTS THE
VALUES OF THESE ANGLES IS SKIPPED

BOUND FOR THE OUTER GIMBAL ANGLES.
ABS(ALPHA(I)) MUST REMAIN .LEe ALPHLM (DEG)
BOUND FOR THE INNER GIMBAL ANGLES.,

ABS(BETA(I)) MUST REMAIN .LE. BETALM (DEG)
BOUND FOR THE RATE OF CHANGE IN THE GIMBAL
ANGLESe ABS(RATE) MUST BE «LEe DOTMAXe IF NOT,
THE RATE 1S SET EQUAL TO DOTMAX OR ~DOTMAX,
DEPENDING UPON ITS SIGN (DEG/SEC)

BOUND FOR THE RATE OF CHANGE IN THE GIMBAL
ANGLESe. ABS(RATE) MUST BE «GEe. DOTMIN. IF NOT,

'THE RATE IS SET EQUAL TO 0. (DEG/SEQ)

SPEED GAIN CONSTANT

BEGINNING TIME (SEC)

NUMBER OF ORBITS FOR WHICH THE SYSTEM OF
DIFFERENTIAL EQUATIONS WILL BE SOLVED

‘TIME INCREMENT AT WHICH OUTPUT 1S DESIRED (SEC)

'MAXIMUM STEP SIZE TO BE USED IN INTEGRATING

THE DIFFERENTIAL EQUATIONS (SEQ)
AN ARRAY OF VALUES EACH OF WHICH REPRESENTS
A CONVERGENCE CRITERION FOR ONE OF THE
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Append}x III

OUTPUT

(contd.)

GMBL

ICNTRL

NOTEL
IBSNSR

INDCON

ITI-3

DIFFERENTIAL EQUATIONS o

A THREE DIMENSIONAL ARRAY WHILH INDICATES
WHICH OF THE CARRIER GYROSCOPES ARE OPERATIVE.
GMBL(1)=0e OR 1le¢ IF GMBL(I)=0es THE GIMBAL

- RATES 'OF THE ITH GYROSCOPE ARE SET TO ZERO

AND THE MAGNITUDE OF THE MQMENTUM OF THE'ITH
GYROSCOPE IS SET TO ZERO.

INDICATES WHICH CONTROL LAW IS TO BE USED.

IF ICNTRL=1s, THE LANGLEY CONTROL LAW IS USED
IF ICNTRL=2, THE H VECTOR CONTROL LAW IS USED
IF ICNTRL=3, THE CROSS PRODUCT CONTROL IS USED
IF ICNTRL=4, THE CLOSED LOOP TORQUE CONTROL

IS USED .

IF NOTEL=0, THE TELESCOPE IS GIMBAL MOUNTED.

.OTHERWISEs IT IS RIGIDLY MOUNTED

IF IBSNSR=0s INERTIAL SENSORS ARE USED. IF
IBSNSR=1, BODY SENSORS ARE USED

IF INDCON=1l, -MIDPT2- BUILDS AN ARRAY —~ICON-
WHICH INDICATES THE CONVERGENCE PATTERN OF
EACH EQUATION. THIS ARRAY IS PRINTED OUT
WHENEVER NON CONVERGENCE OCCURS.,
ICON(2)=10100 INDICATES THAT THE CONVERGENCE
CRITERION FOR THE SECOND EQUATION WAS NOT
MET ON THE FIRST AND THIRD ITERATIONS.
(-MIDPT2- MAKES AT MOST 5 ITERATIONS)

IF INDCON=0s THE PART OF THE PROGRAM
WHICH BUILDS THIS ARRAY WILL BE SKIPPEDs AND
THE CONVERGENCE OF THE EQUATIONS WILL BE
TESTED ONLY UNTIL ONE EQUATION FAILSe.
THEREFORE, IF THE INFORMATION OBTAINED FROM
THE ~ICON- ARRAY 1S NOT NEEDEDs .SET INDCON=0
TO SAVE TIME.

INPUT IS PRINTED OUT. VALUES OF THE SOLUTION OF THE
SYSTEM ARE PRINTED OUT EVERY DTPRNT SECONDS

TIME
GAMMA1

GAMMA?2
PHI»
THETA»
PS1

U

DT
INDOT

CURRENT TIME (SECQ)

X—=AX1S VERNIER GIMBAL ROTATION AT TIME TIME
(ARCSECQ)

Z-AXIS VERNIER GIMBAL ROTATION AT TIME TIME
(ARCSEQ)

DESCRIBE THE ATTITUDE OF THE TELESCOPE AT
TIME TIME RELATIVE TO THE DESIRED

ATTITUDE (ARCSECQ)

THE VECTOR (U(1)sU(2),U(3)) DESCRIBES THE
ANGULAR VELOCITY OF THE TELESCOPE AT TIME
TIME (ARCSEC/SECQ)

CURRENT STEP SIZE

'INDICATES THE BEHAVIOR OF THE RATE OF CHANGE
OF THE GIMBAL ANGLESe. INDOT=102011 INDICATES
THAT THE RATE OF CHANGE OF ALPHA(1),BETA(2),
BETA(3)s WAS LESS THAN DOTMINs THAT OF ALPHA(3)
WAS MORE THAN DOTMAXs AND THAT OF ALPHA(2) AND
BETA(1) WAS WITHIN THE PRESCRIBED LIMITS,
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SUBROUTINES
USED

 Appendix III (contd.) | o ITI-4

MIDPT2 COMPUTES THE SOLUTION OF A SYSTEM OF
SIMULTANEOUS FIRST ORDER DIFFERENTIAL
EQUATIONS BY THE METHOD OF ROMBERG APPLIED
TO THE MIDPOINT RULE

F A SUBROUTINE USED BY =-MIDPTZ2-s IT
DEFINES THE DIFFERENTIAL EQUATIONS USED TO
DESCRIBE THE INITIAL VALUE CONTROL PROBLEM.

TF A ROUTINE WHICH SUPPLIES VALUES OF THE
VECTORS F1,F25T1sT2e F1 AND F2 ARE THE
FORCES EXERTED ON THE CARRIER AND TELESCOPE
RESPECTIVELY, DUE TO GRAVITY GRADIENT,
 AERODYNAMIC AND CREW DISTURBANCE EFFECTS.
Tl AND T2 ARE THE CORRESPONDING TORQUES.

CREW A ROUTINE USED BY TF TO DESCRIBE THE CREW
DISTURBANCE EFFECTS

INTERP A FUNCTION SUBPROGRAM USED BY THE SUBROUTINE
-CREW- FOR LINEAR INTERPOLATION

GAUSS A ROUTINE USED BY THE F SUBROUTINE TO SOLVE
A SYSTEM OF SIMULTANEOUS LINEAR EQUATIONS

INPR A ROUTINE USED BY ~GAUSS- TO COMPUTE INNER
PRODUCTS

VECTOR A PACKAGE OF FUNCTION SUBPROGRAMS USED TO

PERFORM ELEMENTARY VECTOR AND MATRIX
OPERATIONS FOR THREE-DIMENSIONAL VECTORS AND
3X3 MATRICES

REAL M14M24M1C19M2C29114J19K19I12sJ29K29KG19sKG2sKGALKGB,
KGCosKGD9yKSL s 1J1sIK1yJK1
INTEGER CRUDIS

DIMENSION U(22)sALPHA(3)sBETA(3)4ERBND(22) sWU(22)eDX(22)>
TITLE(20)sTEMPU(22)5sA(3)sAD(3),CADI(3),SAD(3)

"COMMON/ALL/C19C25sP(3)sQ(3)sMLaM25113J13K1512542,K2,

GMO(343)9GM1(3,53) sHyIBSNSRsTD(3453)sTMAX1,TMAX2,
IND(6) sNCALL yKSL s DOTMAX sDOTMIN, INDOT3ALPsCRUDIS,
OMEGAOsGMBL (3) s ICNTRLSHV(3) sKG1 4KG243KGA4KGB

BET sGAM,
KGCsKGDsM1C14sM2C2 yNOTEL 9 TOOSEYEL1(3+3) o TWIRE1,TWIRE?Z

EQUIVALENCE (U(9) 3GAMMAL) s (U(10) sGAMMAZ) s {U(11}sALPHAI
(U{14)sBETA) s (U(6)sA(1)),

DATA TITLE/30HLANGLEY CONTROL LAW ’

30HH VECTOR CONTROL LAW ’
30HCROSS PRODUCT CONTROL LAW ’

30HCLOSED LOOP TORQUE CONTROL LAW/
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NAMELIST/INPUT/UsAsADsALPHAZBETA,GMO9sGM1 P »Q+sGMBL sERBND »
GAMMAL s GAMMA2 ¢4M1 3M2 3119J)1aK19TJ19IK19JK19126J2+K24KGA,
KGBsKGCsKGD 9 KG1 s KG29sHs TOsORBITSDTPRNT s INDCONSALP 30OH,y
INDGsBETALMyALPHLMsDOTMAX yDOTMIN4KSL s ICNTRL s IBSNSR4,DTMAX s
TWIRE1 s TWIRE2yNOTEL sCRUDIS s TMAX1, TMAX29BET »GAMA

READ AND PRINT INPUT

READ (55 INPUT)

WRITE(6+50)
WRITE(6sINPUT)

DEFINE CONVERSION FACTORS USED WITHIN THE PROGRAM

DGTORD=341415927/180,
RDTODG=180e/3¢1415927
RDTOSC=RDTODG*3600.

DEFINE CONSTANTS USED WITHIN THE PROGRAM

CONVERT

Cl=le/(1e+M1/M2)
C2=-1e/(1a+M2/M1)

M1Cl=-M1%Cl
M2C2=-M2%*C2

EYE1=AMDEF(T11s1J191K1sI1J1sJ1sJK1sIK14JK14K1)
THE ORBITAL HEIGHT TO FEET

OH=0H¥6076+1155+20925738.,
OMEGAO=SQRT(+14076E17/0H)/0H

DETERMINE THE ENDING TIME

TO TRANSFORMS INERTIAL INTO DESIRED TELESCOPE COORDINATES

TEND=24%3.1415927/0MEGAQ*ORBITS+TO

PRINT TITLES

IR=(ICNTRL-11%5+1
1S=1R+4 '
WRITE(6910)(TITLE(TI)}sI=IRIS)

DO 1 I=1,3
AD(I)=AD(1)*DGTORD
SAD(I)=SIN(ADI(I))
CAD(1)=COS(AD(I))
CONTINUE

TD(151)=CAD(3)*CAD(2) _
TD(2451)=CAD(3) *SAD(2)*SAD(1)~SAD(3)%CAD(1)
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TD(3,1)=CAD(3)#SAD(2)*CAD(1)+SAD(3)%SAD(1)
TD(152)=SAD(3)#CAD(2)
TD(2.2)=SAD(3)*SAD(2)*SAD(1)+CAD(3[*CAD¢1)
TD(352)=SAD(3)*#SAD(2)*CAD(1)-CAD(3)*SAD(1)
TD(1,3)==SAD(2)

TD(2+3)=CAD(2)#SAD(1)
TD(3+3)=CAD(2)#CAD(1)

PRINT INITIAL CONDITIONS

CONVERT

WRITE(6530)TOsU(9)sUl10)s(AlTI)sI=193)s(UlI)s]I=1,3)
INPUT TO RADIANS

GAM=GAMA*DGTORD

ALPHLM=ALPHLM*DGTORD
BETALM=BETALM*DGTORD
DOTMAX=DOTMAX*DGTORD
DOTMIN=DOTMIN*DGTORD

DO 2 I=1,416
UCTI)=U(1)*DGTORD

DETERMINE THE NUMBER OF DIFFERENTIAL EQUATIONS TO BE SOLVED

NDIFEQ=16
IF(ICNTRL.EQe2)NDIFEQ=19
IF (IBSNSR«EQe1)NDIFEQ=NDIFEQ+3

IF ICNTRL=2s THE H VECTOR CONTROL LAW IS USED AND INITIAL VALUES
ARE NEEDED FOR THE COMPONENTS OF THE COMMANDED ANGULAR
MOMENTUM OF THE VEHICLE ‘

IF THE

IF(ICNTRLeNE.2)GO TO 3
CALL F(TOsUsDXsNDIFEQ)
Ut17)=VEQPL (HV)

T00=TO
TIME=TO
DT=DTMAX

KTIME=1
PTIME=FLOAT(KTIME)*DTPRNT+T0O

TOo=TIME
ITKCNT=0
TIME=TO+DT

TIME 1S GRFATFR THAN THFE NEXT PRINTING TIME., SET IT

i
EQUAL TO THAT PRINTING TIME

INDP=0
IF(TIME«LT«PTIME)GO TO 6
TIME=PTIME

INDP=1
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CALL -MIDPT2- TO SOLVE THE SYSTEM OF DIFFERENTIAL EQUATIONS

CALL MIDPT2(NDIFEQsTOsTIME sUsERBND s INDCON» TEMPU, ITK)

IF NECESSARY, ADJUSf THE STEP SIZE 'DT!

GO TO (891199995 7)17TK
DT=DT/20 v
IF(ITKCNToEQs10)CALL EXIT
ITKCNT=ITKCNT+1

GO T0 5

KN2=KN2+1

IF(KN2.LTe5)G0 T0O 11
DT=AMIN1(DTMAX+2.%DT) :
KN2=0

GO 7O 11

DT=DT/2

DO 12 I1=1,NDIFEQ
UCIY=TEMPU(T)

IF INDG=0s THE GIMBAL ANGLES NEED NOT BE TESTED

IF (INDGeEQeO) GO TO 18
INDU(1)=VDEF(De 90090}
IND(4)=VDEF(QOe 906 904}

DO 14 I=1,3

UTEMP=U(TI+10)
IF(ABS(UTEMP)eLT.ALPHLM)GO TO 14
IF(UTEMP.GE.ALPHLMIGO TO 13

U(I+10)==ALPHLM
IND(I)==1
GO TO 14

U(TI+10)=ALPHLM
IND(I)=1
CONTINUE

DO 16 I=4,46

UTEMP=U(I+10)
IF(ABS(UTEMP)eLT«BETALM)GO TO 16
IF(UTEMP GEBETALM)GO TO 15

UCI+10)==BETALM
IND(I)==1"
GO TO 16 .

UCI+10)=BETALM
IND(I)=1
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16

17

18

19

10

20

30
40
50

CONTINUE

!

NCALL=0 w :
CALL F(TIME.U.Dx,NDIFEQ) : .
NCALL=1 ’ .

DO 17 I=1,6
IF(FLOAT(!ND(I))*DX(I*IO)-LEoOo)IND(I)’O

- CONTINUE

IF INDP=1, IT IS TIME TO PRINT

IF(INDP<EQe0)GO TO 4

CONVERT OUTPUT TO ARCSECONDS

DO 19 1=1,16
WU(T)=U(T)*RDTOSC

WRITE(6930) TIMESWU(9)sWU(10)sWUI6) sWUIT)sWU(B) s (WU(I)>
I=153)sDTHINDOT

IF(TIME.GT.TEND)IGO TO 21

DETERMINE THE NEXT PRINT TIME

END

KTIME=KTIME+1
PTIME=FLOAT(KTIME)®DTPRNT+TQO
GO TO &

FORMAT(1HOs5A6/1HO 93X s 4HT IME+5X s 6HGAMMAL 34X s 6HGAMMAZ

6X s 3HPHI 95X s SHTHETAs7X 93HPST s 7X s 2HU1 48X 92HU2+8X,

2HU3 96X s 2HDT 36X s SHINDOT/1H 93Xe ' (SEC) ' 91Xs5(2Xs ' (ARCSEC)!
193 (1Xst (ARCS/SCY 1))
FORMAT(1H1»5A6/1HO 93X s 4HTIMEsSX s 6HALPHAL 34X 96 HALPHAZ 94X
6HALPHA3 45X s SHBETAL 95X s SHBETA2 95X 9 5HBETA3 35X 9 2HDT 96X s
SHINDOT/1H 33X s5H(SEC) s6(5Xs5H(DEG) ) 94Xs5H(SEC))

b

FORMAT(1IH sF9e291XsF(1PEGe2s1X)s16)
FORMAT(1H sF9e2s1XsT7({1PE9e251X),416)
FORMAT(1H1)
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APPENDIX IV
SUBROUTINE F

CeFe BANICK

7=18-67

SUPPLY THE DIFFERENTIAL EQUATION SOLVING SUBROUTINE
-MIDPT2- WITH NUMERICAL VALUES OF THE DERIVATIVES USED

TO DEFINE

THE INITIAL VALUE PROBLEM

CALL F(XsUsDUsNDIFEQ)

CALL LISTeeo

X

u

NDIFEQ

COMMONe o o

VALUE OF TIME FOR WHICH THE DERIVATIVES ARE TO

- BE COMPUTED

ARRAY OF VALUES OF THE FUNCTIONS AT TIME X.
SEE THE MAIN PROGRAM ~GMT=- FOR DEFINITION OF
THIS ARRAY ,

NUMBER OF DIFFERENTIAL EQUATIONS TO BE SOLVED.
NDIFEQ IS DETERMINED IN PROGRAM -GMT-.

SEE MAIN PROGRAM -GMT- FOR DESCRIPTION AND/OR ORIGIN OF
COMMON VARIABLES

DU

COMMONe ¢ »
INDOT

HV

TF

GAUSS

INPR

VECTOR

- CALL L]ISTeee

ARRAY OF VALUES OF DERIVATIVES OF THE FUNCTIONS
AT TIME X. THE ORDER OF THE ELEMENTS OF THIS
ARRAY CORRESPONDS TO THAT OF THE U ARRAY.

INDICATES THE BEHAVIOR OF THE RATE OF CHANGE
OF THE GIMBAL ANGLESe FOR COMPLETE DESCRIPTION
SEE PROGRAM -GMT-.

COMMANDED ANGULAR MOMENTUM OF THE VEHICLE
VECTOR. NEEDED FOR INITIAL VALUES IF THE

H VECTOR CONTROL LAW IS USED,

A ROUTINE WHICH SUPPLIES VALUES OF THE
VECTORS F14F25T1+sT2s F1 AND F2 ARE THE
FORCES EXERTED ON THE CARRIER AND TELESCOPE
RESPECTIVELYs DUE TO GRAVITY GRADIENT,
AERODYNAMIC AND CREW DISTURBANCE EFFECTS,

A ROUTINE USED TO SOLVE A SYSTEM OF
SIMULTANEOUS LINEAR EQUATIONS

A ROUTINE USED BY ~-GAUSS- TO COMPUTE INNER
PRODUCTS

A PACKAGE OF FUNCTION SUBPROGRAMS USED TO
PERFORM ELEMENTARY VECTOR AND MATRIX
OPERATIONS FOR THREE-DIMENSIONAL VECTORS AND
3X3 MATRICES.

SUBROUTINE F(XsUsDUNDIFEQ)
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REAL MIQMZQMICIOMZCZQIIQJI,Klo12OJZQKZQKGIQKGZ,KGA;KGB’
. KGCosKGD oKSL
INTEGER CRUDIS

DIMENSION U(22)sDU(22)sTM(3,3)sTMI(3,3),0MB2(3),
OMB1(3),0MB1M(3,5)9sDOMB1(3,6)
USK21(3),0MB21(3),U41C52(3),0MB2CQA(3+5)
VC1(395)4VC2(395)9F1STAR(346)9F2STAR(3,46),
AC1(356)3AC2(3,6),TEMPV(3),TEMPVYV(3),
TISTAR(358)sT2STAR(346)sTC(3)sTG(3),F1(3)

DIMENSION F2(3)sT1(3)+sT2(3)9S(5,6)sAMTRX(3,3),

AMAD (3) 3 SALPHA(3),CALPHA(3)sE(3)

SBETA(3) sCBETA(3) sDALPHAL(3)+83(343),
S16(5)sV(3)aFF{343)3sGG(393)3AN(393)9BN(343)
- DBETA(3)sAM(3,3)4BM(3,3)4DX(6)
TETA(353)YsTDA(343)3SA(3)sCA(3),DUMMY(3)

COMMON/ALL/C19C24P(3)+Q(3)sMI1sM25T14J1+K1,129J24K2,
GMO(343)9sGM1(343),sHsIBSNSR,TD(3,3),,TMAX1,TMAX2,
IND(6)sNCALL 4KSLsDOTMAXsDOTMINSINDOT,ALP4CRUDIS,
OMEGAOyGMBL(3)9ICNTRL9HV(3)oKGloKGZ’KGA’KGBo
BETsGAM,

KGCsKGDsM1C1 ,M2C2, NOTEL’TO9EYE1‘3’3’QTWIREIQTWIREZ

EQUIVALENCE (DX (1) +sDALPHA)»(DX(4)4+DBETA)
CGAM1=COS(U(9))

CGAM2=COS(U(10))

SGAM1=SIN(U(9))

SGAM2=SIN(U(10))

TMI eee TRANSFORMS‘TELESCOPE COORDINATES INTO SPACECRAFT
COORDINATES

TMI=AMDEF 1 (CGAM2 ,CGAM1%SGAM2 s SGAM1¥SGAM2 ,~SGAM2,
. CGAM1*#CGAM2 3 SGAM1*CGAM2 906 s~SGAM1,CGAM])

TM oee TRANSFORMS SPACECRAFT COORDINATES INTO TELESCOPE
COORDINATES

TM=AMTR ¢ TMI)

‘OMB2 <.« ANGULAR VELOCITY OF TELESCOPE
OMB2=VDEF (U(1),U(2)5U(3))

OMB1 ..+ ANGULAR VELOCITY OF CARRIER
OMB1=VDEF (U{1)sU(2)sU(3)=U(5))
OMB1=AMTV(TMI,0MB1)
OMB1(1)=0OMB1(1)~U(&)

.OMBlM ees PARTIAL RATES OF CHANGE OF THE CARRIER ANGULAR VELOCITY

i
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OMB1M=AMEQPL tTMI)
OMB1M(1s4)=1, :
OMBIM(1-5)*VEQMN¢TMI(1’3))

DOMB1 ees ANGULAR ACCELERATION OF THE CARRIER

VC1 eee

DOMB1=AMEQPL (TMI) !
DOMB1(154)=VDEF (=1450es0s)
DOMB1(155)=VEQMN(TMI(153))

U5K21=VSCALR(TMI(1+3),U(5))
OMB21=AMTV{TMI s OMB2)
UG1C52=VDEF (0e »U(4)#USK21(3) 5U(4) #USK21(2))

DOMB1(1+6)2VDEF(U(4)30e900)
DOMB1(1+6)=VADD(DOMB1(1+6)sU5K21)
DOMB1(1+6)=VCROSS(DOMB1(146),0MB21)
DOMB1(156)=VSUB(DOMB1(1,6)sU41C52)

OMB2CQ=AMDEF 1(0e+s=Q(3)9Q(2)9Q(3)90e9-Q(1)»=Q(2)9Q(1)90e )

OMB2CQ=AMTM(TMI ,OMB2CQ)

PARTIAL RATES OF CHANGE OF THE VELOCITY OF THE

CENTER OF THE CARRIER

VC2 oo

PARTIAL RATES OF CHANGE OF THE VELOCITY OF THE MASS

CENTER OF THE TELESCOPE

AC1 EXX)

ACCELERATION OF THE MASS CENTER OF THE CARRIER

DO 1 1=145 :
VC1(1,1)=VCROSS(OMBIM(1,1)4P)
VC1(1,1)=vSUB(VC1(1s1)sOMB2CQ(1,1))
VC2(1,1)=AMTV(TMsVC1(1s1))
VC1{1,1)=VSCALRI(VC1(ls1),C1)
VC2(141)=VSCALR(VC2(1,1)4C2)

AC1(151)=VCROSS(DOMB1(1,s1)4P)
CONTINUE ’

AC1=AMSUB(AC1,0OMB2CQ)

TEMPV=VCROSS(OMB1 ,P)
TEMPV=VCROSS(OMB1 , TEMPV)

TEMPVV=VCROSS(OMB2+Q)
TEMPVV=VCROSS(OMB2 s TEMPVV)
TEMPVV=AMTV(TMI , TEMPVV)
TEMPV=VSUB(TEMPV, TEMPVV)

AC1(1+6)=VCROSS(DOMB1(14+6)4+P)
ACl(1+6)=VADD(ACL(146)TEMPV)

AC2 eee ACCELERATION OF THE MASS CENTER OF THE TELESCOPE
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AC2(141)=AMTM(TMsACL (1,11)
Acztl.4)-AMTM(TM.ACI¢1.4v1a

F1STAR AND FZSTAR oo NOﬂ INERTIA FORCES FOR THE RESPECTIVE
BODIES
TISTAR AND T2STAR e NOV INERTIA TORQUES FOR THE RESPECTIVE
BODIES

DO 2 1=1,6 g ) B
F1STAR(1s1)=VSCALR(AC1(151),M1C])
F2STAR(1,1)=VSCALR(AC2(1s1)sM2C2)

T1STAR(1+1)=AMTV(EYE1+sDOMB1(141}))
T1STAR(1,1)=VEQMN(T1STAR(1,1))
DUMMY=AMTV(EYE1,0MB1)

DUMMY=VCROSS (DUMMY ,OMB1) :
T1STAR(156)=VADD(DUMMY,T1STAR(1,6))

T2STAR(191l)==12

T2STAR(292)==J2

T2STAR(3,43)=2=K2
T2STAR(196)=U(2)%U(3)1*(J2=-K2)
T2STAR(2+6)=U(3)%#U(1)%#(K2=-12)
TZSTAR(3,6)=U(1)*U12)*(IZ-JZ) '

COMPUTE FORCES AND TORQUES DUE TO CREW MOTION» GRAVITATIONAL. AND
AERODYNAMIC EFFECTS

ETA=OMEGAO#*X

SETA=SIN(ETA)

CETA=COS(ETA)
TETA'AMDEFI(CETA,SETA’OQQ‘SETAQCETAQOQQOOQOODIQ)
TETA=AMTM(TD,TETA)

DO 25 I=1,3

SA(I)=SIN(U(I+5))

CA(1)=COS(U(I+5)) ' v
TDA(191)=AMDEF1(CA(3)1#CA(2)9CA(3)%#SA(2)#SA(1)=SA(3)*CA(1)
sCA(3)RSA(2)#CA(1)+SA(3)%SA(1)sSA(3)%
CA(2)9SA(3)*#SA(2)#SA(1)+CA(3)%CAL(L),
SA(3)%#SA(2)%CA(1)=CA(3)#SA(]1)9s=SA(2),
CA(2)%#SA(1),CA(2)#CA(])) .

TETA(l91)=AMTM(TDA, TETA)

TETA IS NOW A TRANSFORMATION FROM LOCAL VERTICAL TO ACTUAL
TELESCOPE COORDINATES

CALL TF(X.TETA(I.I)oTETA(192)¢TMIoTMoF19F2oT19T2)
F1STAR(1,6)=VADD(F1STAR(146)4F1)
F2STAR(196)=VADDIF2STAR(1+6)sF2)

COMPUT" VERNIER GIMBAL CONTROL TORQUE, TG
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| TG1=-KGA*U(6)-KGB®U(1)~-KG1*U(9)+TWIRE1
| IF(ABS(TG1)eGToTMAX1)TG1=SIGN(TMAX1,TG1)
\ , TG2=~KGCH*U(8)=-KGD#U(3)-KG2#U(10)+TWIRE2
' IF(ABS(TG2)eGToTMAX2)TG2=SIGN(TMAX2,TG2)
TG=VSCALR(TMI(193),TG2)
‘ T6(1)=TG(1)+TG1

START COMPUTATION OF CMG CONTROL TORQUE,TC (TO STATEMENT 18)

aNaXe)

IF (ABS(H) oLTe(1eE=3411GO TO 18

DO 3 I=1,3 :

SALPHA(T)=SIN(U(I+10))

CALPHA(T)=COS(U(I+10))

SBETA(IN=SIN(U(I+13))

CBETA(I)=COS(U(I+13}))
3 CONTINUE

IF(IBSNSR.EQs1)GO TO &
AMAD(1)=U(6)=U(9)
AMAD(2)=U(T)
AMAD(3)=U(8)-U(10)

GO TO 5

C IF IBSNSR=1, ATTITUDE IS OBTAINED BY INTEGRATING ATTITUDE RATE

4 KBS=NDIFEQ-2
; AMAD=VEQPL (U(KBS) )
‘ DU(KBS)=VEQPL(OMB1)

! C COMPUTE COMPOSITE ERROR VECTOR E

5 TEMPV=AMTV(GMO s AMAD)
TEMPVV=AMTV(GM1,0MB1)
F=VADD(TEMPV , TEMPVV)

GKSL=84e /79 «*KSL

DO 9 I=1,3
J=3%(1/1)+(1-1)
K=1+41-3%(1/3)

I1=1452,3

J=341,42

K=243,1
GG(Ts1)==CBETA(I)®SALPHA(TI)
GG(Js1)==CBETA(1)#CALPHA(T)
FF(1,1)==SBETA(T)*CALPHA(TI)
FF(JsI)Y=SBETA(T)*SALPHA(I)

FRIK;1)=CBETAL(I)

aEa NS

COMPUTE TOTAL ANGULAR MOMENTUM

aNaNe!

HV(I)=—=GMBL(I)*GG(JyI)+GMBL(J)*SBETA(J)-GMBL (K)*CBETA(K)
. *SALPHA(K)
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C THE DEFINITION OF VECTOR V DEPENDS ON WHICH CONTROL LAW IS USED

GO TO (T7+697+8)sICNTRL
6 VIIY=U(I+16)=HV(I])
DULI+16)=E(T)
, GO T0 8
7 VII)=E(])

8 AM(141)==KSL*SALPHA(])/CBETALI)
AM(Ko91)==KSL*CALPHA(K)/CBETA(K)
BM(Is1)=GKSL*FF(I,1)
BM(Js1)=GKSL*CBETA(J)
BM(K,1)=GKSL#SBETA(K)*SALPHA(K)

C
9 CONTINUE
C .
IF(ICNTRLoNE«4)GO TO 12
C
C COMPUTE V FOR CLOSED LOOP CONTROL
C

AN(1+s1)=AMTM(GGsAM)
BN(1,1)=AMTM(FF,BM)
AN(1+1)=AMADD(AN,BN)
DO 10 I=1,3 ‘

10 AN(TsT)I=AN(I,I)+1.
BN(1,1)=AMINV(AN)
V=AMTV(BN,E)

C \
C COMPUTE DERIVATIVES OF ALPHA AND BETA
c :
12 DALPHA(1)=AMTV (AM,V)
DBETA(1)=AMTVI(BM,V)
IF(ICNTRL.NE.1)GO TO 14
C
C SPECIAL COMPUTATION OF DALPHA AND DBETA FOR LANGLEY CONTROL LAW
c :
DO 13 I=1,3
K=I+1-3%(1/3)
DALPHA(T)=DALPHA({I)*CBETA(I)
13 DBETA(I)1=GKSL*CBETA(1)*V(K)
C
c ADJUST DALPHA AND DBETA TO ACCOUNT FOR LIMITING AND DEADBAND
C INDOT 1S PRINTED TO INDICATE GIMBAL ANGLE RATE BEHAVIOR
C
14 INDOT=1
DO 17 I=1,6
1J=1=-3%{1/4)
INDOT=INDOT*10
IF{IND(TI)I#NCALL«EGe0iIGO 7O 15
DX(I)=0.
GO TO 17 } o
15 IF(ABS(DX(I))eLE.DOTMAX)GO TO 16

DX(I)=SIGN(DOTMAX DX (1))
INDOT=INDOT+2
GO 70 17
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16 IF(ABS(DX(1))eGE«DOTMINIGO TO 17
DX(I)=0e ‘
INDOT=INDOT+1

17 DX(I)=DX(1)*GMBL(1J)
INDOT=INDOT=-1000000

C COMPUTE CONTROL TORQUE TC FROM DALPHA AND DBETA

TEMPV=AMTV(GGsDALPHA)
TEMPVYV=AMTV(FF ,DBETA)
TEMPV=VADD( TEMPV,s TEMPVV)
TEMPVV=VCROSS({OMB1 4HV)
TEMPV=VADD(TEMPV, TEMPVYV)
TC=VSCALR(TEMPV,4H)

COMPUTE THE ACTIVE TORQUE ACTING ON BODY 1

0NN

T1=VSUB(T1,TC)
18 T1=VSUB(T1sTG)
T1STAR(1+6)=VADD(TISTAR(1+6)T1)

c
TG=VSCALR(TM(141),TG1)
TG(3)=TG(3)+TG2 ’
T2=VADD(TGsT2)
T2STAR(146)=VADD(T2STAR(1+6)sT2) ,
c
c GENERATE THE COEFFICIENT MATRIXs Ss TO REPRESENT THE DYNAMICAL
c EQUATIONS AS A SIMULTANEOUS SYSTEM OF LINEAR ALGEBRAIC EQUATIONS
C S*¥DU=S16 , '
c
81 DO 19 I=1,5:
DO 19 J=1,6
SS=VDOT(F1STAR(15J)sVC1(1,s1))
$5=5S+VDOT(F2STAR(1sJ) sVC2(1,1))
S{T1sJ)=55+VDOT(T1ISTAR(1sJ)sOMBIM(1,41))
IF(14GTe3)GO TO 19
S(I1+J)=S(1sJ)+T2STAR(IJ)
19 CONTINUE
c
DO 21 1=1,5 :
21 S16(1)==S(146) ‘
c
e IF NOTELeNE.Os DU(4)=DU(5)=0 AND ONLY THREE DYNAMICAL EQUATIONS
c REMATN
C
IF(NOTEL.EQ.0)GO TO 23
DU(4)=0
DU(5)=00
DO 22 1J4=1:3
22 S3(1,1J)=VEQPL(S(1s1J))
CALL GAUSS(351,53,516sDUsDETSERR)
GO TO 24
C . .
23 CALL GAUSS(551,S95164DUsDETLERR}
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C
C

aEa NS

aNaNa

24

KINEMATICAL EOUAfIONS RELATING U(1),U(2)4U(3) TO THE EULER ANGLES

SPHI=SIN(U(6))
CPHI=COS(U(6))
TTHETA=TAN(U(T))
CTHETA=COS(U(T)Y)

AMTRX=AMDEF1(1.90.,0.,SPHI*TTHETA9CPHI’SPHI/CTHETA’
CPHI®TTHETA s~SPHI s CPHI/CTHETA)
DU(6)=AMTV(AMTRX V)

DERIVATIVES OF THE VERNIER GIMBAL ANGLES

DUL9)=U(4)
DU(10)=U(5)

DERIVATIVES OF THE CMG GIMBAL ANGLES

END

DU(11)=VEQPL(DALPHA)
DU(14)=VEQPL(DBETA)

RETURN



aEaNelaNakaNaNakealaalaaNaNakataNaXaXalaNaNaiaRaaEaNaEaNa Na Na Ra e

D

AUTHOR
DATE

PURPOSE

CALL

INPUT

onuTPUT

SUBROUTINES
USED

APPENDIX V o |
SUBROUTINE TF | ‘
CoFe BANICK

7=20-67

SUPPLY VALUES OF FORCES AND.TORGUES DUE TO GRAVITY
GRADIENT, AERODYNAMIC, AND CREW DISTURBANCE EFFECTS

CALL TF(TIMEN2,M,TMIoTMyF1,F25T1,T2)

CALL LISTeee

TIME VALUE OF TIME FOR WHICH THE FORCES AND
TORQUES ARE TO BE COMPUTED
N2 LOCAL VERTICAL VECTOR
M UNIT VECTOR PARALLEL TO SPACECRAFT VELOCITY
™I MATRIX USED TO TRANSFORM TELESCOPE COORDINATES
INTO SPACECRAFT COORDINATES
™ MATRIX USED TO TRANSFORM SPACECRAFT

COORDINATES INTO TELESCOPE COORDINATES
COMMON. e o
SEE MAIN PROGRAM ~GMT- AND CALLING PROGRAM ~FGMT- FOR
DESCRIPTION AND/OR ORIGIN OF COMMON VARTABRLFS

CALL LISTeee

F1,F2 FORCES EXERTED ON THE CARRIER AND TELFSCOPFE
RESPECTIVELY

T1,72 TORQUES EXERTED ON THE CARRIER AND TELESCOPE
RESPECTIVELY

CREW A ROUTINE USED TO DESCRIBE THE CREW

DISTURBANCE EFFECTS

VECTOR A PACKAGE OF FUNCTION SUBPROGRAMS USED TO
PERFORM ELEMENTARY VECTOR AND MATRIX OPFRATIONS
FOR THREE-DIMENSIONAL VECTORS AND 3x3 MATRICES

SUBROUTINFE TF(TIMESN2,MyTMI 3 TMyF14F2,T1,T2)

REAL N19N29IX9IY;M;MI9M29119J19K1,129J29K29M1C19M2C2,KSL

INTEGER CRUDIS

DIMENSION TMI(34314F1(3)1eF2(319T1(3)sT2(3)4N1(31,
N2(3)sR1(3)sR2(3)sSFL(3)sSF2(3)1+TG1(3),TG2(3),
QL(3)sM(3)sTAL1(3)sFD1(3)sTD1(3),
CIIM(3),TM(3,43)

COMMON/ALL/ClsC2sP (31 4Q(3YsMIaM243T11,J14K1412,4J24K2,
GM0(393)QGM1(393)9H9155NSR9TD(393)9TMAX19TMAX2’

TA ] Vel NATMAY NATMTIA - YARNAT el =T X120 &~
.llV'/\OIQFV\,HLL_”\QthJUIIU“\I\,U\JII 1!‘1’1!\UUI’HLI”\_F\UU1),

OMEGAOSGMRL (3) s ICNTRLyHV(3)4KG1, KGZ,KGA;KGBo
BETsGAM,
KGCyKGDsMI1C14M2C2 ,NOTELsTOSEYEL(343)s TWIRE1,TWIRE2

COMPUTATION OF GRAVITATIONAL FORCES AND TORQUES

ALPP=ALP/(1+BET)*(1.~BET*COS(OMEGAO*TIME+GAM))
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SQOMEG=0OMEGAN#®*2

N1=AMTV (TMI 4N2)
Q1=AMTV(TMI,Q)
R1=VSUB(P,Q1)
R2=AMTV(TMsR1})"
R1=VSCALR(R1,C1)
R2=VSCALR(R2,C2)

S==3,%¥VDOT (N1,R1)
SF1=VSCALR(N1,5)
SF1=VADD (R15SF1)
SF1=VSCALR(SF1,~SQOMEG#MI)

S==34.#VDOT(N2sR2)
SF2=VSCALR(N2sS)
SF2=VADD (R2+SF2)

TG1(1)=N1(2)%¥N1(3)*(K1-J1)
TG1(2)=N1(3)*N1(1)*(I11-K1)

TG1(3)=N1(1)*N1(2)*(J1-11)
TG1=VSCALR(TG1,3.*SQOMFG)
TG2(1)=N2(2)*¥N2(3)%(K2-J2)

TG2(2)1=N2(3)*N2(1)*(12-K2)
TG2(2)=N2(11%¥N2(2V%(J2-12)

COMPUTATION OF AERODYNAMIC TORQUES

NN

IX=114+12+M1*¥R1(2)*#2+M2*¥R2 (2 ) **2
IY=J1+J2+4MIXR]I (1) ¥ %#24M2%XR2(] ) *¥¥*2

M=AMTV(TMI +M)

CIIM=VYDFF(0as=M(3),M{2))
CON==1 5% ALPP¥SQOMEG* (1Y=IX) ¥VMAG(CT1M)

TA1=VSCALR(CIIM,CON)
C COMPUTATION OF CRFW DISTURBANCE EFFECTS

TTIME=TIME-TO

CALL CREW(TTIME,CRUDISsFD1,7D1)
-F1=VADD(SF1,FD1)
F2=VSCALR(SF2,;-SQOMEG¥*M2)

T1=VADD(TG1l,TD1)
T1=VADD(T1,TAl)
T2=VSCALR(TG2434%*SQOMFG)

: RETURN
END
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